Chemistry Letters 1996 565 ## Enhancing Effect of Titanium(II) for the Oxidation of Methane with O₂ by an EuCl₃-Zn-CF₃CO₂H-Catalytic System at 40 °C Ichiro Yamanaka,* Masanori Soma, and Kiyoshi Otsuka* Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Received March 11, 1996) Bis(2,4,-pentanedionate)TiO and TiO₂ enhanced markedly the activity of the EuCl₃-Zn⁰-CF₃CO₂H-catalytic system for the CH₄ oxidation to MeOH with O₂ at 40 °C. It is suggested that Ti(II) species generated from Ti(IV) by the reduction with Zn⁰ and CF₃CO₂H is responsible for this enhancement. Recently, we have reported the oxidation of CH4 to MeOH with O2 using an EuCl3-Zn0-CF3CO2H-catalytic system at room temperature. 1 The maximum turnover number obtained in this system was 5.3 in 1 h for the formation of MeOH based on EuCl₃. In this letter, we intend to improve the activity of this EuCl₃-catalytic system by the addition of promoters. We speculate that the oxidation of CH₄ proceeds through steps 1-4 in Scheme 1; step 1, reduction of Eu3+ to Eu2+ with Zn0; step 2, reductive activation of O_2 with e^- (from Eu^{2+} or Zn^0) and H^+ (from CF₃CO₂H); step 3, oxidation of CH₄ to MeOH by the activated oxygen on Eu-catalyst; step 4, formation of CO₂ from CF₃CO₂H with the activated oxygen. The step 1 and step 2 were already confirmed by electrochemical studies for the cyclohexane oxidation. 2 The step 3 and step 4 were also confirmed in the previous report. 1 We expect that the addition of promoters may accelerate the electron transfer reactions (steps 1 and 2) or the activation of CH₄ to MeOH (step 3). **Scheme 1.** Model of the reaction mechanism for the methane oxidation in EuCl₃-catalytic system at room temperature. A combination of Zn and carboxylic acid as a reductant has already been reported by Gif(IV) system. 3 The Gif-system is not effective for oxidation of CH_4 and C_2H_6 . 3 Moreover, the EuCl $_3$ -catalytic system catalyses the epoxidation of propylene and the hydroxylation of benzene 2 but the Gif-system does not. 3 The standard condition of the oxidation of $\mathrm{CH_4}$ was $\mathrm{EuCl_3}$ (0.03 mmol), additives (0.03 mmol on the cation bases), $\mathrm{CF_3CO_2H}$ (13.1 mmol), Zn (15.3 mmol), $\mathrm{CH_4}$ of 10 atm (51.9 mmol), $\mathrm{O_2}$ of 4 atm (6.9 mmol), $\mathrm{T} = 40$ °C and reaction time = 1h. Both the solutions before and after the reaction were homogeneous. When a reaction mixture of the oxidation of CH_4 was directly analyzed by GC without the neutralization with NaOH (aq.), the product in the mixture was trifloroacetic acid methyl ester (CF_3CO_2Me). In a separate experiment, a mixture of CF₃CO₂H and MeOH immediately converted to the ester. It was reported that a C-H bond of CF₃CO₂Me is less reactive for an electrophilic attack than that of CH_4 as an effect of strong electron-withdrawing by CF_3CO_2 -group. ⁴ Thus, MeOH (CF_3CO_2Me) accumulates in the reaction mixture not proceeding a successive oxidation to CO₂. Figure 1 shows the influences of the addition of some metal salts, complexes and oxides on the CH4 oxidation under the standard conditions. The turnover numbers (TON) in this figure were based on EuCl₂. The results in Figure 1 indicate that bis(2,4,-pentanedionate)TiO (TiO•AA) and TiO2 enhanced the oxidation of CH₄ (TON > 10 in 1 h) most appreciably. The TON observed here were more than twice of that of the standard EuCl₃catalytic system. 1 It may be unusual that a complex (TiO•AA) and a solid oxide (TiO₂) exhibit similar enhancement of the oxidation. However, it should be noted that TiO, was not observed after the reaction. This suggests that TiO, has been reductively dissolved by CF₃CO₂H and Zn⁰ through eqn. 1. $TiO_2 + 4H^+ + e^- = Ti^{3+} + 2 H_2O$ (-0.666 V vs. NHE) (1) The Ti^{3+} thus formed could be reduced to Ti^{2+} with Zn^0 by taking account the redox potentials ($Ti^{3+/2+} = -0.368 \text{ V} > Zn^{2+/0} = -0.77 \text{ V} > Ti^{2+/0} = -1.63 \text{ V vs. NHE}$). Therefore, the TiO_2 added must have been dissolved as Ti^{2+} in CF_3CO_2H . MeOH (CF₃CO₂Me) was not produced if any one of the elements (CF₃CO₂H, Zn⁰, O₂ or CH₄) had been removed from the EuCl₃-TiO•AA-catalytic system. However, a large amount of CO₂ **Figure 1.** Influences of various additives as sub-catalyst on the oxidation of methane catalyzed by EuCl₃. TiO•AA: bis(2,4,-pentanedionato)TiO. ZrO•AA: bis(2,4,-pentanedionato)ZrO. 566 Chemistry Letters 1996 (TON of CO₂ = 39.5) was produced when CH₄ was not added to this EuCl₃-TiO•AA-catalytic system. These results suggest that MeOH is produced only from CH₄ and CO₂ is produced mainly from CF₃CO₂H, which is quite similar to the results obtained in the EuCl₃-catalytic system without Ti-compounds (Scheme 1). Although TiO•AA catalysed the formation of MeOH (TON = 0.6 in 1h) under the standard condition without EuCl₃, most of the MeOH produced by the EuCl₃-TiO•AA-catalytic system in Figure 1 may be ascribed to the catalytic function of europium promoted by Ti²⁺. Some additives in Figure 1, LiCl, MgCl₂, YbCl₃, LuCl₃ and PbO, decreased the activities of MeOH formation. The agglomeration of Zn powder was observed after the reaction with these additives. Other additives did not affect the activity of MeOH formation. Figure 2 shows the effect of the amounts of TiO•AA added to the EuCl₃-catalytic system on the CH₄ oxidation. A small amount of TiO•AA (~0.005 mmol) is enough to enhance the formation rate (TON) of CF₃CO₂Me. TON of CF₃CO₂Me was almost constant at the amounts of TiO•AA > 0.005 mmol. TON of CO₂ was also enhanced by TiO•AA. The selectivity to MeOH did not depend on the amount of TiO•AA added. This result suggests that Ti compounds accelerate the formation rate of the active oxygen generated in the EuCl₃-catalytic system, but do not change the selectivity to the formations MeOH and CO2. The amount of Zn⁰ reacted was not influenced by the addition of TiO•AA or TiO₂. The efficiency of Zn⁰ for the formation of CF₃CO₂Me, i.e., the ratio of the amount of CF₃CO₂Me (mol) and that of Zn⁰ reacted (mol), ^{1,2} was increased twice from 1% to 2% by the addition of TiO•AA or TiO₂ (> 0.005 mmol), suggesting the enhancement in step 1 or 2 in Scheme 1. Figure 2. Effect of the amount of TiO•AA added on the oxidation of methane catalyzed by EuCl₃. \bullet CF₃CO₂Me / TON, \triangle CO₂ x 0.1 / TON. Figure 3 shows the effect of the amounts of EuCl₃ on the CH₄ oxidation in the presence and absence of TiO•AA (0.03 mmol). The yield of CF₃CO₂Me increased with increasing the amount of EuCl₃ in the in the presence of TiO•AA. The maximum yield of CF₃CO₂Me was 2.7% at the EuCl₃-addition of 0.12 mmol. It should be note, the yields of CO₂ were roughly constant at the EuCl₃-addition > 0.03 mmol. Thus, the selectivity to CF₃CO₂Me increased with increasing the amount of EuCl₃. For the standard EuCl₃-catalytic system, the maximum yield of ${\rm CF_3CO_2Me}$ (1.1%) was obtained at an EuCl₃-addition of 0.06 mmol. The TON of ${\rm CO_2}$ were roughly constant at the amounts of EuCl₃ > 0.06 mmol similar to the observation in the presence of TiO•AA. In other words, the active oxygen species and reaction mechanism must be common for the catalytic systems with and without Ti-compounds. The role of Ti compounds in the EuCl₃-catalytic system is to promote the formation of active oxygen on EuCl₃ catalyst by enhancing the rate of *step 1* or 2 or both. Figure 3. Effect of the amount of EuCl₃ on the methane oxidation in EuCl₃-TiO•AA- and EuCl₃-catalytic systems. • CF₃CO₂Me / mmol, ▲ CO₂ x 0.1 / mmol in EuCl₃-TiO•AA-system. \circ CF₃CO₂Me / mmol, \triangle CO₂ x 0.1 / mmol in EuCl₃-system. The enhancing effect of TiO•AA and TiO₂ was observed for the oxidation of C_2H_6 to EtOH and MeCHO. The TON for the sum of EtOH and MeCHO in EuCl₃-catalytic system was enhanced from 8.0 to 14.8 in 1h by the TiO•AA addition and to 16.9 by the TiO₂ addition. The maximum efficiency of Zn used for the C_2H_6 oxidation in EuCl₃-TiO₂-catalytic system was 5%. Thus, most of the Zn consumed was not used for the oxidation of CH_4 and C_2H_6 . Probably, most of the Zn powder are consumed through eqn. 2, producing H_2O . $O_2 + 4 \text{ CF}_3 \text{CO}_2 \text{H} + 2 \text{ Zn} \rightarrow 2 \text{ H}_2 \text{O} + \text{Zn} (\text{CF}_3 \text{CO}_2)_2$ (2) How do Ti compounds accelerate the formation rate of MeOH and EtOH? At this moment, we can not answer this question because the mechanisms of reaction *steps 1* and 2 in Scheme 1 have not been clarified. ^{1,2} However, the redox of $\text{Ti}^{4+/3+}$ and $\text{Ti}^{3+/2+}$ may be deeply concerned with the oxidations because these standard redox potentials are between those of $\text{Zn}^{2+/0}$ and $\text{Eu}^{3+/2+}$. ## References - I. Yamanaka, M. Soma, and K. Otsuka, J. Chem. Soc., Chem. Commun., 1995, 2235. - 2 I. Yamanaka, K. Nakagaki, and K. Otsuka, *J. Chem. Soc.*, *Chem. Commun.*, **1995**, 1185; I. Yamanaka, K. Nakagaki, T. Akimoto, and K. Otsuka, *J. Chem. Soc.*, *Perkin Trans. 2*, submitted for publication. - 3 D. H. R. Barton, E. Csuhai, D. Doller, N. Ozbalik, and N. Senglet, *Tetrahedron Lett.*, **31**, 3097 (1990). - 4 E. G. Thomas, F. Oliver, and A. Sen, J. Am. Chem. Soc., 109, 8109 (1987).